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Abstract: Because complete species inventories are expensive and time-consuming, scientists and land man-
agers seek techniques to alleviate logistic constraints on measuring species richness, especially over large spatial
scales. We developed a method to identify indicators of species richness that is applicable to any taxonomic
group or ecosystem. In an initial case study, we found that a model based on the occurrence of five indicator
species explained 88% of the deviance of species richness of 56 butterflies in a mountain range in western
North America. We validated model predictions and spatial transferability of the model using independent,
newly collected data from another, nearby mountain range. Predicted and observed values of butterfly species
richness were highly correlated with 93% of the observed values falling within the 95% credible intervals of
the predictions. We used a Bayesian approach to update the initial model with both the model-building and
model-validation data sets. In the updated model, the effectiveness of three of the five indicator species was
similar, whereas the effectiveness of two species was reduced. The latter species had more erratic distributions in
the validation data set than in the original model-building data set. This objective method for identifying indi-
cators of species richness could substantially enhance our ability to conduct large-scale ecological assessments
of any group of animals or plants in any geographic region and to make effective conservation decisions.

Exitoso Modelo Predictivo de la Riqueza de Especies Basado en Especies Indicadoras

Resumen: Debido a que los inventarios completos de especies son costosos y consumen tiempo, los cient́ıficos
y gestores de tierras buscan técnicas para aliviar las constricciones loǵısticas para medir la riqueza de especies,
especialmente en escalas espaciales grandes. Desarrollamos un método para identificar indicadores de riqueza
de especies aplicable a cualquier grupo taxonómico o ecosistema. En un estudio inicial, encontramos que el
modelo basado en la ocurrencia de cinco especies indicadoras pu du explicar el 88% de la anormalidad de la
riqueza de especies de 56 mariposas en una cadena montañosa en el occidente de Norte América. Validamos
las predicciones y la transferabilidad del modelo utilizando datos nuevos e independientes de otra cadena
montañosa cercana. Los valores predichos y observados de la riqueza de especies de mariposas estuvieron
altamente correlacionados, con 93% de los valores observados dentro de 95% de los intervalos confiables de
las predicciones. Utilizamos un método Bayesiano para actualizar el modelo inicial con los conjuntos de
datos tanto de construcción como de validación del modelo. En el modelo actualizado, la efectividad de tres
de las cinco especies indicadoras fue similar, mientras que la efectividad de dos especies fue reducida. Esta
especie tuvo distribuciones más erráticas en el conjunto de datos de validación que en el conjunto de datos
originales. Este método objetivo para la identificación de indicadores de la riqueza de especies podŕıa reforzar
significativamente nuestra habilidad para llevar a cabo evaluaciones ecológicas, a gran escala, de cualquier
grupo de animales o plantas en cualquier región geográfica y para tomar decisiones de conservación efectivas.

‡Address correspondence to E. Fleishman.
Paper submitted July 23, 2003; revised manuscript accepted October 22, 2003.

646

Conservation Biology, Pages 646–654
Volume 18, No. 3, June 2004



Mac Nally & Fleishman Indicators Predict Species Richness 647

Introduction

Identifying a limited suite of species that reflects the
species richness of an entire biota has become a holy
grail for ecologists, conservation biologists, and natural
resource agencies (Heywood et al. 1995; Chapin et al.
2000; Mooney 2000). Whether the emphasis is on so-
called hotspots, coldspots, or the full gradient of species
richness values, species richness is a critical variable for
biodiversity management that has been used for decision
making and prioritization of conservation efforts ( ECC
2000; Pimm et al. 2001; Roberts et al. 2002). It is too
expensive and time consuming to measure species rich-
ness over extensive areas, however, especially for non-
vascular plants and invertebrates and in tropical or ma-
rine ecosystems (Walters 1986; Pressey et al. 2000; Faith
et al. 2001). As an alternative to conducting exhaustive
species inventories, scientists and management practi-
tioners hope that species richness can be predicted more
cheaply and quickly through the use of “indicator” species
(Pearson 1994; Scott 1998; Gustafsson 2000), defined
here as species with occurrence patterns that are cor-
related with the species richness of a larger group of or-
ganisms. Although it now seems unlikely that indicator
species from a single taxonomic group (e.g., birds) will
provide information on the richness of an entire biota (all
vertebrates, invertebrates, and plants) at scales meaning-
ful for most land-use decisions (Prendergast et al. 1993;
Mac Nally et al. 2002; Vessby et al. 2002), indicators still
may be effective within limited taxonomic boundaries
(Fleishman et al. 2000).

Effective maintenance of native biodiversity in the face
of increasing human impacts requires accurate measure-
ment of key trends and responses to disturbances and
alternative management actions at landscape, regional,
and continental scales (Chapin et al. 2000; Pressey et
al. 2000). Developing a standardized method of measur-
ing species richness is vital for international conserva-
tion efforts (ECC 2000; Pimm et al. 2001; Roberts et al.
2002). For example, Conservation International’s recently
launched Tropical Ecology, Assessment, and Monitoring
(TEAM) Initiative plans to establish a network of more
than 50 field stations worldwide to assess and monitor
biodiversity with a standard protocol (da Fonseca et al.
2002). Similarly, the Millennium Ecosystem Assessment
aims to provide decision makers with relevant data on
biodiversity patterns, ecosystem processes, and underly-
ing forces at spatial scales from local to global (Gewin
2002). Few tools are available, however, with which to
accomplish these goals. Most existing biodiversity mea-
sures have been developed for much smaller spatial and
temporal scales (Kareiva & Wennergren 1995). The vali-
dated method of biodiversity assessment we present here
should increase our capacity to estimate large-scale bio-
diversity patterns and enhance our ability to conserve
natural capital.

The indicator-species approach is a potentially efficient
way to model species richness. Efforts to predict species
distributions over extensive areas as functions of distribu-
tions of food or other habitat variables are often successful
(Hanski 1999; Miller & Cale 2000), but obtaining these
data frequently is more expensive and labor-intensive
than direct inventories. Moreover, species-habitat models
rarely can be developed for all the species in a given as-
semblage. If reliable indicators of species richness can be
found, it may be much easier to measure the occurrence
of indicators than to conduct comprehensive species in-
ventories or habitat assessments (Gustafsson 2000). From
a realistic, management-oriented perspective, it is also
easier to train field biologists and other personnel to iden-
tify a limited set of species and to design monitoring plans
for a few indicator species than to expect those personnel
to recognize and track an entire fauna.

Indicator species are often selected according to ad
hoc criteria, such as their charisma or legal protection sta-
tus (Andelman & Fagan 2000). We argue that statistically
based selection of potential indicators is better justified
and likely to be more effective. Prediction of species rich-
ness based on the occurrence of indicator species should
be regarded as a testable hypothesis. The hypothesis may
be in the form of a statistical model—a function of the oc-
currence of indicator species—that should be confronted
with new test data (Landres et al. 1998; Mac Nally et al.
2000).

We recently developed a statistical protocol to select
potential indicators of species richness that are appli-
cable over hundreds to thousands of square kilometers
(Mac Nally & Fleishman 2002). These scales are typical
of those over which much ecological and biogeographic
research is conducted and many conservation and land-
management decisions are made. Our objective at all
stages of our work, and especially in this study, was to
conduct a robust test of the effectiveness of our frame-
work for identifying indicators of species richness. As an
initial case study, we applied the method to butterfly as-
semblages in the central Great Basin of western North
America. Butterflies are among the taxonomic groups
most frequently suggested as indicators of species rich-
ness and ecosystem integrity (Kremen et al. 1993; New
et al. 1995). Models were built from data collected in
one mountain range in the late 1990s, whereas valida-
tion data specifically intended to facilitate a robust test of
the model were gathered in a second, nearby mountain
range (approximately 40 km away from the first) in the
early 2000s. Mountain ranges are an appropriate scale for
developing and testing the transferability (sensu Leftwich
et al. 1997) of indicator-species models in this geographic
region. Resource agencies in the Great Basin (U.S.A.) gen-
erally develop separate management plans for individual
mountain ranges, yet there is little existing information
on species distributions that can be used for ecological
planning.
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Methods

From 1996 to 1999, we used standard inventory meth-
ods to characterize assemblages of resident butterflies in
10 canyons in the Toquima Range (approximate north-
south boundaries 39◦17′50′′ to 38◦29′9′′) (Fleishman et al.
2001). We divided canyons into multiple segments from
base to crest (49 total). Each segment was 100 m wide and
extended for approximately 100 m change in elevation.
Mean segment length was >1 km, which is greater than
the dispersal distances of virtually all resident butterflies
(Fleishman et al. 1997).

We used well-established butterfly inventory methods
described in detail by Fleishman et al. (1998). Field per-
sonnel were familiar with the regional butterfly fauna,
and we restricted our inventories to weather most favor-
able for butterfly flight. It is reasonable to assume that
a given butterfly species is absent in a given year if the
area has been searched with these methods during the
appropriate season and weather conditions (Pullin 1995;
Reed 1996). Using these methods in the nearby Toiyabe
Range, for example, we recorded 98% of the theoretical
total number of resident species expected in the moun-
tain range under a Michaelis-Menten model (Clench 1979;
Raguso & Llorente-Bousquets 1990; Soberón & Llorente
1993). Thus, it is unlikely that we failed to detect more
than a very few species that actually were present in a
given site in a given year (Pollard & Yates 1993; Harding
et al. 1995).

We recorded 56 resident species of butterflies from
our study locations in the Toquima Range. We thought
widespread species would not be useful for modeling vari-
ation in species richness and would thus have little poten-
tial to serve as indicators of species richness, whereas re-
stricted species, which occur at relatively few sites, often
have highly specific ecological requirements that are not
shared with many other species. Therefore, we chose to
consider as potential indicator species only the 22 species
occurring in ≥30% and ≤70% of the 49 sites. Thus, we
modeled species richness, including the potential indica-
tor species, at each site as a function of the incidence of
a set of indicator species drawn from those 22 species.
Similar guidelines would be applicable to any taxonomic
group.

We sought to identify one predictive model from among
the 222 combinations of predictor variables (i.e., all possi-
ble pairs, trios, and so forth of potential indicator species).
The selected model should be the most statistically effi-
cient, that is, the model that optimizes fitting error against
model complexity (i.e., number of predictor variables)
(Mac Nally 2000). A selection technique now advocated
widely is Schwarz’s Bayesian Information Criterion, (BIC)
(Schwarz 1978), for which the model with a minimum
value is sought. (For a general overview of Bayesian sta-
tistical methods and associated terminology, see Bergerud
& Reed [1998] and references therein.)

The dependent variable, species richness, is likely to
have a Poisson distribution because it must take relatively
small, non-negative values (Crawley 1993). However,
Poisson regression requires iterative, numerical proce-
dures that are difficult to automate for millions of poten-
tial models. Therefore, we took a short-cut by modeling
the logarithm of species richness against combinations
of incidences of the 22 species with ordinary multiple
linear regression. This is easier to automate because mul-
tiple linear regression involves matrix calculations rather
than iterative fitting. The logarithmic transformation is
appropriate for Poisson-distributed variables in general-
ized linear models (McCullagh & Nelder 1989; Cameron
& Trivedi 1998).

From this preliminary screening, we identified a set
of five indicator species whose incidences produced the
minimum BIC among models of species richness of but-
terflies in the Toquima Range: Ochlodes sylvanoides,
Everes amyntula, Euphilotes ancilla, Speyeria zerene,
and Coenonympha tullia. The five indicator species en-
capsulate a diversity of life-history characteristics found
among the resident members of their taxonomic group in
the biogeographic region. This may explain why this par-
ticular suite of species is so strongly associated with vari-
ation in species richness (Mac Nally & Fleishman 2002),
and these characteristics of effective indicator species
in the aggregate may be generalizable among taxonomic
groups. In our butterfly case study, for example, the phe-
nologies of flight activity of the species spanned the field
season. In addition, the group of indicator species in-
cluded taxa with varied larval host plants. Two species
feed on different genera in the family Poaceae, and one
each feeds on Polygonaceae, Fabaceae, and Violaceae. In
addition, other work has demonstrated that although oc-
currence patterns of at least four of the five indicator
species can be explained largely as functions of eleva-
tion (Fleishman et al. 2001), the species have different
elevational distribution limits (Fleishman et al. 1998, un-
published data).

Having identified the five indicator species, we com-
puted model coefficients—that is, regression coefficients
associated with each indicator species—with Bayesian Pois-
son regression (Spiegelhalter et al. 2000). The model is

log(µi) = α0 +
Q∑

k=1

αkδik + ε;

Yi ∼ Poisson (µi).

The αs are the regression coefficients to be estimated, µi

is the estimated mean species richness at site i given the
state of the predictor variables (i.e., presence or absence
of the Q indicator species, δik), δik indicates whether
species k is present or absent at site i, ε is model error,
and Yi is the observed species richness at site i, which is
assumed to be distributed (∼) as a Poisson variable with
mean µi. The Bayesian approach to estimating parameters
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formally incorporates prior knowledge of the values of a
parameter and produces a probability statement about
the interval within which the parameter value lies. This
means that each regression coefficient has a distribution
of values rather than a single value. If one has virtually no
prior knowledge of the values of a parameter, then it is
appropriate to use a “noninformative” prior distribution
for that parameter. Typically, one might use a flat uniform
distribution (between two endpoints, ±1000 perhaps) or
a normal distribution with high variance (see below). Use
of noninformative priors when there is little or no prior
information means that the posterior probability distribu-
tions are dictated by the newly collected data (Lee 1989).
In the model-building phase, we gave the αs noninfor-
mative normal priors (α ∼ normal (µ = 0, σ 2 = 300)),
indicating that no prior information on their values was
available. The fitted model accounted for 88% of the de-
viance in butterfly species richness (Mac Nally & Fleish-
man 2002).

To validate or test the efficacy of the model based on
these indicator species—the model’s ability to predict
species richness patterns as well as to explain consid-
erable deviation in species richness patterns in the data
used to build the model—we wanted to use a data set that
was roughly comparable in spatial and temporal extent
to the model-building data set. Therefore, we conducted
inventories of butterfly species in 29 new locations in
2000–2002 in the Shoshone Mountains, which are ap-
proximately 40 km west of the Toquima Range (approx-
imate north-south boundaries 39◦14′19′′ to 38◦57′32′′)
(Fleishman et al. 2001). The two mountain ranges are
within the same biogeographic subregion (Austin & Mur-
phy 1987). They have similar climates, a common biogeo-
graphic past and ancestral biota, and comparable land-use
histories.

Bayesian calculations produce probability distributions
for model parameters, such as regression coefficients.
One often uses “95% Bayesian credible intervals” (Lee
1989) to characterize the range of values for the parame-
ter that encompasses 95% of the probability mass for that
parameter. To compute such credible intervals for predic-
tions of species richness at newly inventoried locations,
we used all possible (25 = 32) combinations of indicator-
species incidence (e.g., [0, 0, 0, 0, 0], [0, 0, 0, 0, 1], . . . ,
[1, 1, 1, 1, 1]) in conjunction with the distributions of
values for each regression coefficient computed from the
Poisson-regression model. This formed a simple “look-up
table” within which the observed combination of indica-
tor species for a validation site was cross-referenced to a
predicted value of species richness and associated credi-
ble intervals.

Ultimately, one of our primary objectives is to construct
models that have low spatial decay rates—in other words,
models useful for estimating species richness over exten-
sive areas. There are several main steps in this process.
First, the validity of the existing model must be assessed.
To test the efficacy of our initial model, we constrained

the regression coefficients tightly so that the value of each
coefficient was specified with high precision (i.e., very
small standard deviation). This effectively prevents the
“Bayesian updating” of the model by the new data and
provides a test comparable to usual frequentist statistics.

If the initial model successfully predicts species rich-
ness patterns, as it did in this case, the model-building
and model-validation data sets can be combined to yield
an improved or “updated” model that more effectively
represents species richness patterns over a large area.
Therefore, in this second step we relaxed constraints on
the regression coefficients by using the full regression-
parameter distributions, including the computed preci-
sions from the model-building phase (Mac Nally & Fleish-
man 2002). This relaxation allows full Bayesian updat-
ing to proceed so that the model parameters (both their
means and their standard deviations) can be updated by
exposure to the new data (see Hilborn & Mangel 1997).
This approach melded our new validation data from the
Shoshone Mountains with the existing model based on
data from the Toquima Range to provide an updated
model based on both data sets. The applicability of the
updated model then can be tested by collecting new val-
idation data over an even greater geographic extent.

Given the flexibility of the WinBUGS programming lan-
guage (version 1.3; Spielgelhalter et al. 2000), we com-
puted the proportion of the posterior probability masses
(PPMs) of the updated distribution of values for each re-
gression coefficient that fell within ±10% of the mean of
the distribution of values for the regression coefficients
in the initial model. WinBUGS is an iterative Markov chain
Monte Carlo simulation model. Because the modeling pro-
cess is iterative, one obtains many (typically several thou-
sand) predictions that cover a range of values. The poste-
rior probability mass refers to the probability distributions
for the predicted values. If much of the PPM fell within the
probability distribution of the regression parameters for
the initial model (the “model-building distribution”), then
the validation data confirmed that the indicator species
had similar importance for predicting species richness in
both the model-building and model-validation data sets.
However, if the PPM distribution was shifted substan-
tially upward (larger regression coefficient) or downward
(smaller regression coefficient), then the validation data
suggested that the relative importance of the correspond-
ing indicator species in predicting species richness was
different in the two data sets.

The efficacy of indicator species may be affected by dif-
ferences in the spatial and temporal pattern of their occur-
rence between the model-building and model-validation
data sets. Therefore, we analyzed changes in occurrence
rates—the proportion of inventoried sites in which a
species was recorded—and changes in “false-negative”
rates between the model-building and model-validation
data sets. A false-negative rate is a measure of the condi-
tional likelihood that a species with an erratic temporal
distribution will be present in any year at a site, given that
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it is known to occupy the site at some point in time. In this
context, false negatives represent real variation in species
occurrence as opposed to observer error, which we as-
sumed to be minimal, albeit not zero. In other words,
a false negative can be obtained if a site can and often
does support the species (i.e., if larval host plants and
other necessary resources are available), but the species
is not present at the site during a given year, perhaps
because vegetation senesced unusually early or weather
conditions were unfavorable.

Site occupancy can only be determined using inventory
data. Accordingly, if a species was not recorded during our
3 years of inventories, we considered it absent. To com-
pare false-negative rates among species, we calculated the
false-negative rate as the number of annual absences di-
vided by the number of years of inventory data for sites at
which the species was present in 1 or more years. Thus,
presence in only 1 of 3 years yields a false-negative rate of
(3–1)/3 ∼ 0.67, but presence in 2 years would produce a
false-negative rate of (3–2)/3 ∼ 0.33. To statistically assess
differences in false-negative rates, we treated each site
in either data set (model-building or validation) for a given
species as a Bernoulli trial drawn from a common distri-
bution with the same false-negative rate. The model is

logit(ρi) = α + βδi, ρi ∼ binomial(Pi, Ni).

This models the false-negative rates (ρs) of all sites in the
building and validation data sets together. Data sets were
distinguished by the δs, which were set to 0 for the model-
building data set and 1 for the validation data set. Thus,
α is an estimate of the baseline false-negative rate and β

is the additive difference associated with the validation
data set. For example, if the computed α = 0.5 and β =
0.2, then the false-negative rate for the model-building
data set would be 0.5, but the value for the validation
data set would be 0.5 + 0.2 = 0.7. The ρs are assumed to
be binomially distributed means, from which there are Ai

absence years, in sites from which the species is known
to occur, in Ni inventory years per site (3 for 25 validation
sites and 2 for 7 validation sites). Noninformative normal
priors were used for the regression coefficients (α and β).
We again used WinBUGS to compute directly the distri-
bution of the difference between the mean false-negative
rates for the model-building and validation data sets and
the PPM approach to evaluate that difference. In this case,
we computed the proportion of the PPM above zero. If
≥90% of the PPM exceeded zero then the coefficient was
deemed to represent an important positive shift. If ≤10%
of the PPM exceeded zero, then this was regarded as an
important negative change.

Results

We originally built the model with sites in the Toquima
Range from which we had collected 3 years of inven-

tory data. We collected 3 years of inventory data for 22
of the validation sites in the Shoshone Mountains (2000–
2002). For the remaining 7 validation sites, however, we
had only 2 years of inventory data (2001–2002). For the
former 22 validation sites, we conducted a linear regres-
sion in which we regressed species richness over 2 years
(2001–2002) against species richness over 3 years (2000–
2002). This allowed us to generate expected species rich-
ness values for the latter 7 validation sites. The projected
3-year richness function was S3 = 0.879 (1.683 SE) +
1.068 (0.069 SE) × S2, R2 (adjusted) = 0.920, where S3 is
the projected 3-year species richness value and S2 is the
observed 2-year species richness value. The S3 projected
values were used to assess model fit for the 7 sites for
which only 2 years of inventory data were available.

Twenty-seven of the 29 observed (or projected) species
richness values fell within the 95% credible intervals
(Fig. 1). Although the number of indicator species con-
tributed to overall richness in the validation sites (max-
imum difference of four), this explained little of the differ-
ence between sites with the fewest and most species (32
species; Fig. 1). In other words, the number of indicator
species present in a given site, which ranged from one
to five, had little effect on the difference in species rich-
ness between the sites with lowest and highest species
richness. Mean predicted values were highly correlated

Figure 1. Mean predicted species richness (dashed
line), upper and lower 2.5% credible limits, and
observed or projected 3-year species richness values
(large solid circles) for all model validation sites in
the Shoshone Mountains. Small solid circles show the
number of indicator species observed in each site.
Observed 2-year species richness values for the seven
sites with 2 rather than 3 years of inventory data are
shown with open circles. The x-values are ordered by
ascending mean predicted species richness.
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Table 1. Original and updated model parameters for the Bayesian analysis of butterfly species richness.∗

PPM distribution

Parameter Description mean ± SD ≥110% mean ± 10% ≤90%

Original model parameters
α0 constant 2.352 ± 0.091 — — —
α1 Coenonympha tullia 0.309 ± 0.074 — — —
α2 Euphilotes ancilla 0.318 ± 0.083 — — —
α3 Everes amyntula 0.236 ± 0.066 — — —
α4 Ochlodes sylvanoides 0.193 ± 0.083 — — —
α5 Speyeria zerene 0.195 ± 0.070 — — —

Updated model parameters
α0 constant 2.345 ± 0.082 0.000 1.000 0.000
α1 Coenonympha tullia 0.315 ± 0.065 0.311 0.402 0.287
α2 Euphilotes ancilla 0.249 ± 0.056 0.034 0.217 0.749
α3 Everes amyntula 0.195 ± 0.047 0.120 0.292 0.588
α4 Ochlodes sylvanoides 0.202 ± 0.055 0.424 0.258 0.318
α5 Speyeria zerene 0.195 ± 0.062 0.410 0.242 0.348

∗Data are presented as posterior distributions. PPM indicates the proportion of the posterior probability mass for a parameter that was ≥110%
of the original model mean value, within 10% (plus or minus) of the original model mean value and ≤90% of the original model mean value.

with the 3-year observed values (sites from which 3 years
of inventory data had been collected) or projected val-
ues (sites from which 2 years of inventory data had been
collected) (RSpearman = 0.799). The average absolute devi-
ation was 3.6 species, but 4 sites contributed dispropor-
tionately to this deviation. Four sites had unusually large
deviations (at least 6.7 species fewer than predicted). One
of those sites had 14 fewer species than predicted. The
average absolute deviation for the other 25 sites was 2.7
species.

In the posterior probability distributions for the Bayes-
updated model, the constant was virtually unchanged,
reflecting its very small standard deviation (0.091) rela-
tive to the mean (2.352) in the original model (Table 1).
Coefficients for three of the five indicator species,
Coenonympha tullia, Ochlodes sylvanoides, and Spey-
eria zerene, changed little when the model was updated
with the validation data. This means that the presence of
the latter three species provided a multiplicative factor
(regression coefficient) in the updated model similar to
that in the original model (i.e., eα). However, the coeffi-
cients for the other two indicator species (Euphilotes an-
cilla [−22%] and Everes amyntula [−17%]) were shifted
substantially downward, with much of the posterior prob-
ability mass <90% of the mean value in the original model
(75% and 59% of the PPM, respectively; Table 1). There-
fore, the effectiveness of Euphilotes ancilla and Everes
amyntula as indicators of species richness was reduced,
which may be why the predicted values of species rich-
ness overestimated the observed or projected values by
approximately one species per site (Fig. 1).

We present occurrence rates of the indicator species
without statistical tests of significance, as appropriate in
the Bayesian context, although a test for identity of pro-
portions (Sokal & Rohlf 1969) might be used in a classi-
cal frequentist context. Occurrence rates of two species,
Everes amyntula and Ochlodes sylvanoides, differed lit-

tle between the building and validation data sets. How-
ever, occurrence rates for the other three species were
substantially greater in the validation data set than in the
model-building data set—38% greater for Coenonympha
tullia, 147% greater for Euphilotes ancilla, and 137%
greater for Speyeria zerene (Table 2).

False-negative rates in the two data sets were sub-
stantially different for four of the five indicator species
(all but Everes amyntula), although the change for
Coenonympha tullia (−0.06) fell just above the 0.10 de-
cision criterion (recall that we considered a change in
false-negative rate “substantial” if ≤0.10 or ≥0.90 of the
PPM was >0). For four of the five species (all but Eu-
philotes ancilla), false-negative rates decreased markedly
in the validation data set, indicating a substantially more
consistent presence in that data set. That is, if a species
was present at a location during our inventories, then it
was more likely to be detected in more years (Table 2).

The updated model appeared to provide a consistent fit
between the model-building (Toquima Range) and model-
validation (Shoshone Mountains) data sets (Fig. 2). Lo-
cally weighted regression scatterplot smooths (Lowess;
a smoothing method in which observations farther from
the predicted x value are downweighted relative to obser-
vations closer to the predicted x value [Cleveland 1979;
Quinn & Keough 2002]) for the two sets of data were
similar. Therefore, the updated model seems to repre-
sent both sets of data well and will be used for future
modeling.

Discussion

We developed an objective, statistically based method to
identify indicators of species richness that should be ap-
plicable to any taxonomic group at landscape or regional
scales (thousands of square kilometers) in any ecosystem.
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Table 2. Comparison of occurrence rates (proportion of inventoried sites in which a species was recorded) and false-negative rates (see text)
between the model-building (Toquima Range, 1996–1999) and model-validation (Shoshone Mountains, 2000–2002) data sets for the five indicator
species.∗

Occurrence rates False-negative rates

Species building validation building validation Change PPM

Coenonympha tullia 0.673 0.931 0.17 0.11 −0.06 0.11
Euphilotes ancilla 0.265 0.655 0.37 0.47 0.10 0.90
Everes amyntula 0.367 0.379 0.57 0.50 −0.07 0.27
Ochlodes sylvanoides 0.592 0.621 0.54 0.41 −0.13 0.07
Speyeria zerene 0.408 0.966 0.55 0.08 −0.47 0

∗PPM indicates the proportion of the posterior probability mass above zero with respect to the distribution of the difference between the
false-negative rates for the two data sets; values ≤0.10 or ≥0.90 were deemed substantial for decreases and increases, respectively.

One of the most useful potential contributions of our
work is that a standard method for identifying indica-
tor species can be used for taxa and geographic loca-
tions beyond those employed to develop the method.
The method’s applicability is not restricted to butterflies,
terrestrial invertebrates, or western North America. Thus,
our framework for identifying indicator species may sub-
stantially enhance our ability to conduct large-scale eco-
logical assessments and to make effective conservation
decisions.

A model based on the occurrence of indicator species
selected according to our method “explained” nearly 90%
of the deviance of species richness in the data used for
its construction (Mac Nally & Fleishman 2002). More im-
portant, from the perspective of our model’s broader ap-
plicability both within and beyond our study system, is
that validation tests indicated that the method is useful for
estimating species richness at scales pertinent to contem-
porary land-use management. Predicted and observed val-

Figure 2. Fitted versus observed species richness for
the Bayesian updated model. Data for the Shoshone
Mountains and the Toquima Range are displayed
separately. Lines are lowess (tension 0.66) smoothed
curves.

ues of species richness were highly correlated, and more
than 90% of the observed values fell within the 95% cred-
ible intervals of the predictions. Over what distance will
the model’s accuracy remain high? Estimating the spatial
“decay rate” of a model’s usefulness is a critical stage in
assessing the ecological reasons why the occurrence of
indicator species is correlated with the richness of whole
assemblages, and the confidence that conservation prac-
titioners can have in statistical models of species richness.
We expect that the model for butterflies in the Great
Basin, and, by extension, models for other taxonomic
groups and ecosystems to which our method is applied,
will prove transferable over much larger areas, typically
hundreds of kilometers or more, provided those areas
have similar climate, pools of species, and land-cover and
land-use patterns.

Pronounced environmental stochasticity often dimin-
ishes the predictive ability of correlative models. As ex-
plained below, we believe that the effects of precipitation
extremes were detectable in the comparison between
predicted and observed values of species richness in our
case study. On the whole, however, the model was robust
in the face of climatic variability. In our case study, four
of the validation sites contributed disproportionately to
the average absolute deviation between predicted and ob-
served species richness. For the two sites with the great-
est deviation, the low observed values of species richness
(relative to the predictions) may reflect recent drought
conditions in the study area. Running or standing water
can function as a limiting resource for butterflies that ob-
tain nutrients from mud puddles (Arms et al. 1974; Mur-
phy & Wilcox 1986; Boggs & Jackson 1991). Presence
of surface water and groundwater also delays senescence
of larval host plants and adult nectar sources. Field mea-
surements indicate that 2001 was the driest in the past
10 years in the central Great Basin and the fourth driest
in the 70-year period of record ( J. Korfmacher, personal
communication). A hot, dry spring in 2002 similarly lim-
ited the amount of water, especially groundwater, avail-
able to plants and butterflies during the growing and
flight seasons. The site with the largest deviation contains
a spring that appeared virtually dry during the period in
which we collected validation data. Similarly, the site with
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the second largest deviation had the lowest mean distance
to a stream channel of any of our validation sites, but the
channel remained dry between 2000 and 2002. Although
the third site did have standing and running water, it was
heavily grazed by domestic cattle each year, which virtu-
ally eliminated food sources for adult butterflies.

Model predictions represent falsifiable hypotheses that
should be validated with new data before the model is
used to guide management decisions. Thus, we strongly
advocate that potential users of our method conduct a
formal validation test of their own model and, ideally, “up-
date” the model before using it for conservation planning.
In our updated model, the influence of Euphilotes ancilla
and Everes amyntula as indicators of species richness
was reduced. Euphilotes ancilla was the only indicator
species whose false-negative rate was greater in the valida-
tion data set than in the model-building data set. Tempo-
ral variation in its occurrence pattern may have rendered
the species a less effective contributor to projected values
of species richness. Similarly, although neither the occur-
rence rate nor the false-negative rate for Everes amyntula
differed substantially between the building and validation
data sets, the species had the highest false-negative rate
(and the lowest occurrence rate) among the five indica-
tor species in the validation data set. In other words, its
occurrence was relatively infrequent and erratic. Again,
in any model, fluctuation in predictor variables is likely to
diminish predictive accuracy. As a result, in the context
of our method for identifying indicators of species rich-
ness, it makes sense to focus particular attention during
the model-validation stage on indicator species that have
markedly irregular occurrence patterns.

Our understanding of the state of species and ecosys-
tems around the world is poor. Assessing their current
state and gauging how environmental changes may affect
their future condition are vital to making decisions that
will maximize protection of biological diversity and pro-
vision of ecosystem services (Gaston 2000; Margules &
Pressey 2000). The ecological and socioeconomic com-
plexities of conservation planning, including logistic and
financial impediments to data collection, often force sci-
entists and resource practitioners to seek short-cuts for
developing management schemes. However, few organ-
isms in any taxonomic group or ecosystem have been
identified that are reliable and cost-effective indicators
of variables at the community level or higher ecological
levels (Scott 1998). We acknowledge that, depending on
location and taxonomic group, an experienced observer
would not need to spend considerably more time and
money to conduct a comprehensive inventory of the fo-
cal taxonomic group than on a search aimed at just the in-
dicator species. However, local field biologists potentially
could collect information on the indicator species in the
course of other work. This might be an efficient method,
especially in large managed landscapes. Also, many taxo-
nomic groups and ecosystems are not amenable to direct
assessment. In the latter situations, our approach is likely

to be much easier and more practical than attempting to
measure the richness of all species in an array of sites
distributed over an extensive area.

A demonstrably effective model of species richness as
a function of indicator species is one of several tools that
may help produce increasingly well-informed strategies
for addressing diverse management objectives. Our ap-
proach has strategic relevance for large-scale ecological
assessments because it can be applied in an identical way
to any assemblage and ecosystem (da Fonseca et al. 2002).
By developing and testing hypotheses to explain why a
particular set of indicator species encompasses funda-
mental information about a larger biota, we may draw
general and transferable inferences about the nature of
ecological assemblages. Such models are tools that may
substantially improve our ability to monitor and conserve
native species and ecosystem functions in a rapidly chang-
ing world.
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